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Results of an extensive comparison of numerical methods for simulating hydrodynamics are
presented and discussed. This study focuses on the simulation of Nuid Nows with strong
shocks in two dimensions. By “strong shocks,” we here refer to shocks in which there is
substantial entropy production. For the case of shocks in sir, we therefore refer to Mach
numbers of three and greater. For flows containing such strong shocks we find that & careful
trestment of Now discontinuities is of greatest importance in obtaining accurale numerical
results. Three approaches Lo ireating discontinuities in the fow are discussed—artificial
viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions
to Riemann's problem. The advantages and dissdvaniages of each approach are discussced and
illustirated by computed results for three test probicms. In this comparison we have focused
our sitention entirely upon the performance of schemes for differencing the hydrodynamic
equations. We have regarded the nature of the grid upon which such dilferencing schemes are
applied as an independent issue outside the scope of this work. Therefore we have restricted
our study to the case of uniform, square computational zones in Cartesian coordinates. For
simplicity we have further restricted our attention 10 two-dimensional difference schemes
which are built out of symmetrized products of one-dimensional difference operators.

I. INTRODUCTION

Over the last 3 years, a great number of numerical schemes have been devised for
the simulation of compressible gas dynamics on digital computers. A major difficulty
which has enlivened research in this area is the problem of representing the shock and
contact discontinuities which arise in these simulations. As early as 1950 a solution
to this problem was proposed by von Neumann and Richtmyer [1]. With minof
modifications this first solution to the problem is still in general use today. However,
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certain disadvantages of von Neumann and Richtmyer's approach have led to
continued efforts at more convenient, more accurate, and/or more elegant solutions.
In this article we will discuss three diffcrent approaches to the representation of
discontinuities which have evolved over the years. We will limit our consideration to
approaches to “shock capturing,” in which shocks are smeared out on the grid
somewhat so that they may be treated in a relatively simple and convenient fashion.
Our goal is to present a comprehensive comparison of these approaches, so that their
relative merits can be accurately assessed.

The motivation for this work is the great need for accurate simulations of fMlows
with strong shocks which exists in many fields of physics. Much experience indicates
that the overall accuracy of such simulations is very closely related to the accuracy
with which flow discontinuities are represented. Several algorithms have been
proposed which perform well when applied 1o one-dimensional flow problems but
which encounter major difficulties in two dimensions, Because two-dimensional
calculations dominate present applications of gas dynamic simulation, we witl focus
on these more difficult simulations here.

Recently techniques for adapting & computational grid to aid in the resoluion of
flow discontinuities have received a great deal of attention. Although we will make
some remarks about this subject, our main interest in this work is to compare the
difference schemes which may be used on a particular grid and not the methods for
choosing the grid itself. We regard the issues of choosing a difference scheme and of
choosing a grid as largely independent, so that it makes sense to study them
separately. We will also lcave aside all issues relating to the treatment of the
geometric source terms which arise when curvilinear coordinates are employed. Thus
we will work exclusively in Cartesian coordinates, and we will use only uniform
grids. In the same spirit we will generate all our two-dimensional difTerence schemes
by forming symmetrized products of one-dimensional difference operators, All flows
computed here will also employ an especially simple equation of state, namely, that
of a gamma-law gas with gamma equal to 1.4. Even with all these restrictions, many
computational difficulties remain, and there is a wide spread in the performance of
the various methods considered below.

1. THREE MAJOR APPROACHES TO THE REPRESENTATION OF DISCONTINUITIES

a. Ariificial Viscosily

This earliest and most commonly used approach to representing discontinuitics
was originally suggested by von Neumann and Richtmyer [1}. In the flow of real
fluids we believe that there are no discontinuities. There are instead very thin regions
of very steep gradients. If terms sepresenting viscosity and hesat conduction were
included in the usual equations of hydrodynamics, the discontinuities in the solutions
of these equations would no longer develop. However, we would have lo resolve
smooth structures on the very small distance scales characteristic of viscous
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momentum transport and molecular heat conduction. Without changing the flow very
much we can increase the physical coefficients of viscosity and heat condution so
that discontinuities are spread over distance scales which are negligible but still
resolvable on a practical computational mesh. von Neumann and Richtmyer
suggested that mn artificial viscous pressure be used to smear shocks over a few
computational cells, or zones. Later Lapidus |45] suggested that terms describing
diffusion of mass, momentum, and energy be used for the same purpose. In both
methods the terms sdded to the differential equations cause dissipation of kinetic
energy into heat.

b. Linear Hybridization

In this approach the results of two difference schemes are blended together. A high-
order difference scheme which is very accurate in smooth flow but badly behaved at
discontinuities is blended with a low-order scheme. The low-order scheme should
have sufficiently large dissipative truncation errors that it yielkds monotone profiles
for flow discontinuities. In smooth flow, the high-order scheme is used, but near a
discontinuity the low-order scheme is blended with it to an extent sufficient to
guarantee monotone representations of the jumps at the discontinuity. We will refer
10 this criterion for determining the blending weight factor as a monotonicity
constraint. In order to preserve the exact conservation of mass, momentum, and
energy by the composite scheme when the blending factors vary over the grid, it is the
fluxes of these conserved quantities at zone interfaces as computed by the two
schemes which are biended. These combined fluxes are then differenced in order to
update the mass, momentum, and energy of each zone.

This approach of linear hybridization is similar to the artificial viscosity approach
in one respect. To a high-order method which oscillates near discontinuities some
terms are added which are negligible in smooth flow and which are strongly
dissipative near discontinuities. However, these terms are not motivated by analogy
with a more realistic physical model for the flow than is given by. the inviscid flow
equations. Instead, the added terms are designed specificaily to give the sharpest
possible discontinuity profiles which are slso monotone. They are able to perform
this task better than the artificial viscosity terms; but under certain circumstances the
monotonicity constraint proves not to be the physicatly appropriate condition, and
then difficulties can arise.

¢. Godunov's Approach

A third means of treating discontinuities, suggested by Godunov |2}, is to
introduce explicit nonlinearity into the difference method. In the two other
spproaches, difference schemes are derived from Taylor series expansions of the
terms in the differential equations. This technique is fundamentally based upon the
assumption that the solution is smooth. At a discontinuity this assumption is inap-
propriate; hence the need to force a well-behaved solution by introducing an
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unphysically large viscosity or an unphysical constraint of monotonicity. In 1959
Godunov pioneered a new approach to this problem |2|. Instcad of building up a full
solution to the hydrodynamic equations by piecing together smooth, small-amplitude
solutions, he built up a solution by piecing together discontinuous solutions. These
discontinuous solutions closcly approximate the smooth ones where those are appror-
piate, but they have the great additional advantage of approximating the true solution
reasonably well even when that solution is not smooth.

Godunov made use of a nonlinear low problem which is simple enough to permit
exact solution—Riemann’s shock tube problem. This simple solution describes the
nonlinear Now which develops from a discontinuous jump separating two constant
states. In general, the jump develops into two nonlinear waves, either shocks or
rarefactions, with a contact discontinuity in between (cf. Ref. |3]). Godunov's
approach was then to spproximate a hydrodynamic flow by a large number of
constant states, compute their interactions exactly, and average the resulls in a
conservative fashion. This procedure leads to an accurate and very well-behaved
treatment of shock discontinuities. Godunov’s approach has also been extended to
higher-order methods [4-9]. In all of these extensions, the Riemann solver is an
essential element in allowing narrow discontinuities without unphysical oscillations.

A dilferent way of using Riemann problems was developed by Glimm, Chorin, and
others |10-15]. This method, the random choice method, represents the Mow within
each zone by the detailed solution to the Reimann problem sampled at a represen-
tative point within the zone. Diffusive errors from spatial averaging are avoided, but
errors in the time dimension take their place. Unfortunately the very desirable
properties of this method in one dimension do not persist in its multidimensional
formulations to date (cf. [13]), so that we will not discuss the method further here.

1Il. ADVANTAGES AND DISADVANTAGES OF THE THREE APPROACHES

a. Artificial Viscosity

The major advantage of this approach is its simplicity. if a large enough artificial
viscosity is added lo the equations of hydrodynamics, their solutions will always be
smooth and the design of effective difference methods can be done in a systematic,
straightforward way. This procedure is especially successful when the artificial
viscous effects are important on distance scales of a fixed length. When practical
considerations force this length scale to vary with the size of the computational zones
of a strongly nonuniform grid, large unphysical effects can resuil. This difficulty,
which was first noticed in 1968 by Axelrod [16], has been discussed at length in
Ref. |17} and will receive no further attention here. :

The straightforward use of an artificial viscosity method on practical problems
involves a trade-off of computation time and compuler memory resources for
program simplicity. Because shocks are smeared out over three or more zones by
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these methods, fine grids are necessary if the grids are to be uniform to allow for the
possibility of shock motion to any point in the problem domain. This necessity for
fine grids is caused by the direct relationship between the accuracy of the
computation and the thickness of the shocks in many problems of practical interest.
The results we will show in a later section demonstrate that if a fully converged
solution is desired, this straightforward approach is impractical. Even for the
relatively simple 2-D test problems presented below full convergence requires 400,000
words of memory and rather large amounts of computer time.

A more practical approach toward the use of these methods has been suggested by
Oliger, and has been developed by Gropp [18], Bolstad {19], and Berger and Oliger
|20]. In this approach the mesh is locally refined ih both space and time in the
neighborhood of a discontinuity. Of course, this idea of local grid refinement is not
entirely new, but Oliger and his collaborators have carried it out in a very general
and systematic fashion. Local mesh refinement saves the computer memory required
for a globat fine grid at the cost of introducing substantial program complexity. The
computer time needed to achieve a given level of accuracy can also be reduced, but
savings here are nol as great as one might expect. Considerable time is required to
decide where and by how much the grid should be refined. To prevent sudden jumps
in the solution at the locations of discontinubus changes in the mesh width, the
regions of mesh refinement must be wider than one would suspect at first. Finally, the
comutation on the refined mesh regions must be specially organized for veclor
computers. This special organization involves both extra computer time and program
complexity. A discussion of these issues can be found in {21]. A detailed assessment
of the costs and benefits of the local mesh refinement approach is beyond the scope
of this article. An investigation of the usefulness of this approach when combined
with some of the difference schemes discussed in this article is presently under way.

An aiternative approach is the use of a continuousty adaptive mesh. In this
approach the mesh is continuously deformed so that structures in the Now which have
disparate characteristic length scales are all resolved most effectively. This sort of
method is indispensible in problems which contain very thin features whose internal
structures must be computed in detail. The method was pioneered in astrophysical
and combustion physics simulations [22-29], in which very thin features whose
internal structures are essential to the problem must be carefully tracked. In the work

'of Winkler |24-26| an additional equation relating the distribution of grid points 1o

the flow solution is solved implicitly together with the flow equations. This is a very
effective way 10 deal with the extreme grid distortions forced on the method in order
10 resolve very sharp features in the flow. Similar approaches have been developed by
Dwyer ef al. |17], and later by Miller and Miller |28], and Gelinas et al. |29). In this
fast work the mesh equations are developed so that an estimate of the error of the
computation is minimized.

All these continuously adaptive grid schemes have onc major drawback—they
demand an implicit treatment of the flow equations. This is caused by the very small
zomes which are used 1o resolve thin features. These zones would force a prohibitively
small Courant limit on the time step for an explicit scheme. Consequently, these
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methods are not to be recommended for use in problems for which only simple
shocks and contact discontinuities need be well resolved. Such discontinuities have
jumps which can be determined by conservation laws or other conditions which make
no reference to the detailed internal structure of the jump. Therefore it is not
necessary to force the computation 1o be implicit, and hence very slow, in order to
obtain the correct jumps by resolving these structures,

Another disadvantage of the continuously adaptive grid schemes should be noted;
namely, they become considerably more complicated in two dimensions. Most
schemes for adapting a two-dimensional grid 10 a flow contsining thin features
involve nonorthogonal meshes (cf. |27] and |55]). This adds considerable complexity
to the flow equations in the form of numerous terms involving the metric coefFicients
of the coordinate system defined by the grid. A detailed assessment of the general
effectiveness of continuously adaptive grid schemes is beyond the scope of this
article; however, it is clear that for a certain class of problems where the detailed
internal structure of thin fronts must be computed they may prove to be very
powerful.

b. Linear Hybridization

The linear hybridization approach is intermediate in complexily between the
approaches of artificial viscosity and explicit nonlinearity. In this spproach fluxes of
the conserved quantities—mass, momenturn, and energy—are compuled at the zone
interfaces using both a low-order- and a high-order-accurate difference scheme. A
linear combination of these fluxes is then computed at each interface using weight
factors which may be nonlinear functions of the local conditions of the flow. These
blended fluxes are then differenced in order to update the conserved quantities within
the zones. In general, the low-order scheme will be well-behaved at discontinuities but
inaccurate in smooth flow. In contrast, the high-order scheme witl generally oscillate
at discontinuities but yield excellent results in smooth flow. The idea of linear
hybridization is to combine the best features of both methods by combining their
results in an intelligent way.

The process of linear hybridization requires about twice as much work as the
simpler artificial viscosity method. The advantage of the method which offsets this
_ additional work is an improved resolution of flow discontinuities when a uniform grid
is used. The goal of the linear hybridization approach is to limit the width of discon-
tinvities 10 the width of the sharply rising part of the shock profile of a high-order
difference scheme, while eliminating the attendant post-shock oscillations by
appropriate blending with a low-order scheme. The low-ordér scheme controls the
high-order scheme by determining which of the features produced by that scheme
should be believed and which should not. The composite method produces very sharp
discontinuities under favorable circumstances, but it is clearly limited in a
fundamental way by the resolving power of the low-order scheme. This limitation is
most. apparent when the interaction of discontinuitics must be computed, The
smearing of the interaction region by the low-order scheme can then cause the
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composite method to fail to recognize the presence of a passively advected discon-
tinuity such as a contact discontinuity. This effect can be seen in the test problems
presented below,

A more important limitation of the linear hybridization approach is the difficuity
in devising appropriate weight factors for the low-order and high-order Muxes in the
absence of any additional information about the inherently nonlinear physical
processes which operate near flow discontinuities. A linear hybridization of first- and
second-order difference schemes of the von Neumann and Richtmyer type has been
devised by DeBar [30|, and has been in use since 1968. However, this method was
unable to remove all oscillations at Now discontinuities without a rather large amount
of smearing. Another early linear hybridization is described by Harten and Zwas in
|3i]. A blending algorithm was later devised by Boris and Book |32] which yields
sharp discontinuities without oscillations.

Boris and Book suggesied that the blending of low-order and high-order fluxes be
controlled by a monotonicity constraint. They set the weight factor of the low-order
flux to zero unless this would cause an extremum to be introduced which would not
be computed using the low-order flux alone. In such a case the low-order flux is given
Jjust enough weight so that no new extremum is generated. For simple advection in
one dimension, this monotonicity constraint that no new extrema should be generated
is a direct consequence of the dilferential equation, and the results obtained using this
constraint are excellent. However, problems arise when this constraint is generalized
in a straightforward way to systems of nonlinesr differential equations, such as the
equations of hydrodynamics. Then no such monotonicity constraint is implied by the
differential equations, and use of such a constraint can lead to difTiculties 1n
particular, & smooth region with strong gradients can be turned into a sequence of
discontinuous jumps, with the appearance of a staircase. This effect can be seen in all
the results of the ETBFCT scheme of Boris |33], which are presented below in
Section V1. This possibitity that smooth flow may be represented by staircases does
not generally hinder the convergence of a linear hybridization. As the grid is refined
the staircases which are generated converge to the smooth solution by developing
greater numbers of treads of lesser height. -

An interesting case of oversteepening of wave structures can occur when linear
hybrization is used in separate | — D sweeps of a 2 — D calculation. Then oblique
shock fronts may be given a stsircase appearance. This effect can be seen in the
2 — D results of the ETBFCT scheme which are presented in Section V1, The effgetis
caused by forcing too narrow a description of the shocks which arise in the
component ] — D sweeps. These shocks arise from | — D projections of the ‘trpe
shock jump, and hence the velocity jumps across them will be in error. In a scheme
with very low dissipation, noise can be introduced into the smooth post-shock flgmeif
these incorrect shocks in the 1 — D sweeps are too narrow. This effect has been
pointed out in the context of the random choicé method by Colella |13]. Therduis
some indication of this effect in the ETBFCT results presented below.

The technique of “flux-corrected transport,” or FCT, was first discussed by Bewis
and Book in terms of an antidiffusion operation to remove excessive diffusion fr:}ﬁa
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low-order difference scheme. The reformulation of Boris and Book’s method in terms
of a lincar hybridization is due to Zalesak [34]. Harten |35] has also devised
schemes based on a point of view similar to antidiffusion, which he calls artificial
compression. Because his schemes have not yet been engineered for general use, we
have not included them in our study. It is interesting to note that the MUSCL scheme
of van Leer, which will be discussed in the following section, is a linear hybridization
technique when it is reduced to the case of simple advection. In that case the
monotonicity criterion used by van Leer to blend first- and second-order fuxes is
based on the same philosophy as that of Boris and Book, and it gives nearly the same
results (cf. |[4])

The linear hybridization technique of Boris and Book has been generalized and
improved by Zalesak |34]. His new schemes, untike all those discussed here, perform
a 2 — D computation for a zone in a single step. Therefore they are not included in
this study. However, a detailed investigation of several new lincar hybrid schemes of
that type in one dimension is presently under way, and the results will be presented in
a subsequent article |36).

c. Godunov's Approach

In this approach a narrow representation of flow discontinuities is made possible
by building into the numerical method a knowledge of the propagation and
interactions of nonlinear waves. This knowledge is built into the method in the form
of & Riemann solver. The Riemann solver computes the nontinear interaction of two
constant states of the fluid, and tells us what nonlinear waves emerge from this
interaction. Nonlinearity is inciuded in this way, because the Riemann probiem is the
only nonlinear flow problem simple enough to permit a solution 1o be computed at
every zone interface for each time step. Convergence of the method on & fine grid is
based on the assumption that, aside from the jumps at flow discontinuities, the
changes in the Mlow variables within the zones of such a grid are small. The fluxes of
conserved quantitics computed for an appropriately chosen discontinuous flow model
using a Riemann solver agree with those valid for smooth flow up to and including
terms of second order in the size of the jumps at the discontinuity. Of course, when
the fow actually is discontinuous, the Riemann solver yields a more reliable result
than a calculation based upon a smooth flow model.

In all the schemes of this class which will be discussed in this article, the Riemann
solver is incorporated into the method in the same way. These schemes begin by
determining a set of interpolation polynomials describing the distributions of the low
variables within the zones of the grid. The data used 1o construct these interpolation
functions consist of zonc-averaged values of flow variables related to conserved quan-
tities. To update these zone averages, fuxes of the conserved quantitics, averaged
over the time siep, are required at the zone interfaces. The constant states used as

_input to the Ricmann solver arc chosen to represent the domains of dependence for a
given zone interface which are swept out during the time step by the characteristic
curves of different families. The information contained in these domains of depen-
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dence is determined using the interpolation polynomials describing the internal zone
structures. The order of these polynomials determines the spatial order of accuracy of
the resulting numerical method. This sequence of operations is discussed in more
detail in Section Ve.

The major disadvantage of this approach is the complexity introduced into a
difference scheme through a Riemann solver. The simplest such scheme, Godunov's
first-order method, requires about twice as much computer time per zone per lime
step as the second-order MacCormack scheme with an artificial viscosity. This cost
in program complexity and computational effort per zone is more than offset by the
benefit of high accuracy when a higher-order scheme involving explicit nonlinearity is
used. This high accuracy results from the narrow structures with which discon-
tinuities are represented by such a scheme, and from the excellent representation of
discontinuity interactions which the Riemann solver provides.

Although one form of program complexity is introduced via the Riemann solver,
another form of complexity is made unnecessary by the narrow shock struclures
which the Riemann solver allows. These narrow structuses permit the use of uniform
grids for describing all discontinuitics whose jump conditions can be built into a
Riemann solver. Thus in many applications the need for greatly distorted adaptive
grids, with all the complexities they involve, is eliminated.

A disadvantage of Godunov's approach is that the Riemann solver it requires
becomes more complicated when the equation of state cannot be represented by 8
simple gamma law or an isothermal assumption. In this case a subiteration is
required in the Riemann solver (cf. [37, 14]). However, it should be noted that
correspondingly more work is required with the antificial viscosity approach. in that
case one must smear a shock out over a larger number of zones, so that the physical
processes such as molecular dissociation which cause the effective gamma (o change
are properly computed within the shock structure. With the linear hybridization
method it is not clesr how such a complex shock should be computed.

The complexity introduced into & numerical method by a Riemann solver is really
needed only near discontinuities. It is therefore natural to hybridize such & method
with a set of simple difference equations which is equivalent to the full nonlinear
method up to terms of some order in the jumps of the state variables within 2 zone.
This much faster calculation may be performed for the overwhelming majority of
zones in which these jumps are small. Because of the overhead involved in sorting the
zones into the two categories, this procedure yields no gain in speed for Godunov's
method on a CRAY-I computer. For the much more complicated PPM scheme,
which will be described in Section Vc, a factor of two in speed may be gained in this
way on 8 CRAY-1. The reasons for these disappointingly small speed-ups have been
discussed in [21]. On a more favorably organized computer, 8 speed-up factor of
about three should be possible for the PPM scheme. It should be noted that the speed
of an artificial viscosity method using local mesh refinement in space and time to
treat discontinuities would be affected by these same considerations on & CRAY-1
computer,
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IV. THREE TEST PROBLEMS

a. Two Interacting Blast Waves

This one-dimensional test problem was introduced in {21] to illustrate the strong
relationship between the accuracy of the overall Mlow solution and the thinness of
discontinuities on the grid. 1t involves multiple interactions of strong shocks and
rarefactions with each other and with contact discontinuities. This problem is
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extremely difTicull to solve on a uniform Eulerian grid, although it poses no particular
difficulty for a Lagrangian calculation.

The initial condition consists of three constant states of a gamma-law gas, with
y = 1.4, which is at rest between reflecling walls separated by a distance of unity. The
density is everywhere unity, while in the leftmost tenth of the volume the pressure is
1000, in the rightmost tenth it is 100, and in between it is 0.01. Two strong blast
waves develop and collide, producing a new contact discontinuity. This evolution is
quite complex. A wave diagram depicting the contours of density in space-lime for
this problem is shown in Fig. 1. In Fig. 1b the region of strong wave interactions near
the collision of the two blast waves is shown in detail. Shocks and contact discon-
tinuities are easily located in Fig. ! by the concentration of many contour lines along
their paths.

In an effort to obtain the most accurate possible solution for the evolution of this
flow we have used a special version of the scheme PPMLR described in-Section Vc.
This special version of PPMLR treats the flow as containing three distinct fluids, so
that the two contact discontinuities which result from the initial pressure jumps can
be accurately tracked. During the initial phases of the flow evolution in which no
wave interactions occur PPMLR is not used and the flow is computed exactly.
During the subsequent evolution the PPMLR calcuiation is aided by refining the
computational mesh by a factor of B in both space and time in the five zones nearest
to each flow discontiruity. The reference mesh for this calculation contains 3096
zones. These zones have a width 1/2400 in most of the computational domain.
However, the mesh is finer near the location of the collision of the two blast waves in
order to resolve the very narrow rarefaction wave which is formed there. Thus for
064 <x<068 and for 0.74 <x <081 we have dx=1/4800, while for
0.68 < x < 0.74 we have dx = 1/9600.

In Fig. 2a the flow is shown at time 0.01, On the right, the initial pressure jump
has sent a strong shock into the cold gas and a strong rarefsction into the hot gas
next to the right-hand wall. This carefaction is in the process of reflecting from that
wall, producing a region of nearly constant pressure and density next to the wall.
These nearly constant values steadily decline in time due to the linear expansion of
this gas away from the wall. Between the strong shock and the rarefaction near the
right wall are two constant states separated by a strong contact discontinuity. At the
left in the figure & similar structure has developed, but this structure has evolved
further because of the higher initial pressure near the lefi-hand wall. The rarefaction
produced by this initial high-pressure region has already reflected off the leR-hand
wall completely. A constant state with zero velocity is lefi next to this wall, and the
reflected rarefaction is interacting with the strong contact discontinuity near x = 0.3.
This interaction has produced kinks in the pressure and velocity profiles near x = 0.2
and a kink in the pressure profile at the contact discontinuity. The kinks near x = 0.2
mark the edge of a rarefaction reflected from the contact discontinuity. The edge of
the rarefaction transmitted into the dense slab is about to overtake the strong shock
near x =0.34.

In Fig. 2b the flow is shown at time 0.016. On the right, the rarcfaction is still in
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Fia. 2. The interaction of two blast waves as computed by a special version of the PPMLR scheme
with a nonuniform grid of 3096 zones. See discussion in Section 1Va,

the process of reflecting from the right-hand wall. The reflected rarefaction is Just
beginning to emerge from the region of nearly constan pressure and density next {o
the wall, where it is interacting with the incident rarefaction. On the left, the
rarefaction reflected from the contact discontinuity is just about to reach the left-hand
wall. The transmitted rarefaction moving to the right has overtaken the strong shock
and weakened it. This shock therefore generates less entropy and this has caused the
sudden change in the density slope just to the left of the shock. This kink in the
density profile marks the location of the mass element which just passed through the
shock when the transmitted rarefaction overtook it.
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In Fig. 2c the flow is shown at time 0.026. On the right, the rarefaction has
completely reflected from the right-hand wall and is beginning to interact with the
contact discontinuity. A transmitted rarefaction has penetrated about one-third of the
way into the dense slab. On the left the two rarefactions travelling in opposite
directions in Fig. 2b have fully separated. Between them are two constant states
separated by a contact discontinuity. The rarefaction on the left is in the process of
reflecting from the left-hand wall. The reflected rarefaction is just emerging from the
tegion of nearly constant pressure and density set up near the wall. The isolated
rarefaction travelling 1o the right continues 10 weaken the shock, producing an
entropy gradient in the shocked gas.




128 WOODWARD AND COLELLA

o u r w © o
VILOCITY (M) “ne B0l DEMSITY M1
o ——— —_
6
10
Yy
5
4
or — o Em T
a u x U] @ Q [=] n E [T<] [+ 4] (=]
LT N 0k DEMSITY Ry 10 038

Fia. 2—Continued,

In Fig. 2d the flow is shown at time 0.028. The two blast waves are Jjust now
colliding. The peak density at this time does not reach the limiting value of 36,
because the reflected shocks are significantly weaker than the incident ones. Although
it is not apparent from the figure, the sharp density spike is indeed well resolved in
the calculation, and the peak density shown is accurate to about a percent. In Fig. 2¢
the flow at time 0.030 is shown. Already by this time a rarefaction between the two
reflected shocks has brought the peak density down to about 24. A great deal of
structure is visible in the high-density regions. Starting at the left we have the
reflected shock travelling to the left down & steep density and entropy gradient. This
gradient continues behind the shock until a newly created contact discontinuity is
reached at the location of the earlier shock collision. To the right of this contact
discontinuity a rarcfaction moving to the left can be discerned from the pressure
profile and it can be seen in the wave diagram in Fig. Ib. Further to the right is the
reflected shock moving to the right down a density gradient. Finally, we come 1o the
contact discontinuity at the edge of the original right-hand dense slab.

In Fig. 21 the flow is shown at time 0.032. The reflected shock moving to the right
has now moved into the hot gas near the right-hand wall. The interaction of this
shock with the contact discontinuity has generated a very strong rarefaction wave
moving to the left which is just now reaching the central contact discontinuity. In
Fig. 2g, at time 0.034, this rarefaction is in the process of interacting with the central
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contact discontinuity. The increase in the density directly behind the reflected shock
moving to the lefl is caused by the entropy gradient in this gas. This reflected shock
is just moving into a region of gas with constant entropy. Therefore the density
gradient behind this shock will change sign in the near future. Note also that the.
rarefaction reflected from the left-hand wall is now beginning to penetrate the dense
slab of cool gas.

In Fig. 2h the flow is shown at time 0.038. This is the time at which all our test
runs in Section Vla are displayed. It should be clear from the above description of the
flow evolution that this problem involves the multiple interactions of strong nonlinear
continvous waves and discontinuities of various kinds. Because much of the
important interaction takes place in a smatl volume, this problem is very difficult to
compute on a uniform Eulerian mesh. It is therefore a good test for Eulerian
difference schemes designed for flow problems involving strong shocks and their
interactions in one dimension.

b. A Mach 3 Wind Tunnel With a Step

This two-dimensional test problem was introduced more than a decade ago in the
peper by Emery [38] which compared several difference schemes. Since only the
best of those schemes is of much interest nowadays, it is worthwhile to reuse the
problem here to compare more modern difference methods. Results for this problem
obtained with the original MUSCL code written by Woodward are presented by van
Leer in |5]. Results obtained with a single-step Eulerian MUSCL are presented by
Colella in [B]. Also resuits obtained with several methods are briefly presented in {7].
Here we will present much more comprehensive results. Obviously this problem has
proven to be a useful test for a large number of methods and large number of years.

The problem begins with uniform Mach 3 flow in a wind tunnel containing a step.
The wind tunnel is 1 length unit wide and 3 iength units long. The step is 0.2 length
units high and is located 0.6 length units from the left-hand end of the tunnel. The
tunnel is assumed to have an infinite width in the direction orthogonal to the plane of
the computation (i.c., “slab symmetry” is assumed). At the left is a Now-in boundary
condition, and at the right all gradients are assumed 1o vanish. The exit boundary
condition has no effect on the fMlow, because the exit vetocity is always supersonic.
Initially the wind tunnel is filled with a gamma-law gas, with y= 1.4, which
everywhere has density 1.4, pressure 1.0, and velocity 3. Gas with this density,
pressure, and velocity is continually fed in from the left-hand boundary. These admit-
tedly artificiat initial conditions make the problem VEry easy set up, a necessary
feature of a useful test problem,

Along the walls of the tunnel reflecting boundary conditions are applied. The
corner of the step is the center of a rarefaction fan and hence is a singular point of
the flow. In the papers referenced above, nothing special was done st this singular
point. Consequenily the flows shown in those papers are seriously affected by large
numerical errors generated just in the neighborhood of this singular point. These
errors cause a boundary layer of about one zone in thickness to form just above the
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Fig. 3. The time evolution of the Mach 3 wind tunnel problem discussed in Section 1¥b. The results
were obtained with the PPMLR scheme using a uniform grid with dx = Ay = 1/80. The contours of
density are shown at time intervals of 0.5 up to time 3. At time 4, the contours of density, pressure,
A=p/p v,, v,, and (v,/c)— | are also plotted. In each plot 30 equally spaced contours are shown,
with the contour for the lowest level or for any negative level drawn a3 a dotted line.

step in the wind tunnel. Shocks then interact with this boundary layer, and the
qualitative nature of the flow in the tunnel is altered more or less dramatically,
depending upon the difference scheme and the grid which is used. The sensitivity of
various difference schemes to the treatment of the flow near the corner of the step can
be assessed by comparing the results presented here with those in {7, for which no
special boundary condition was applied at the corner.
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Fra. 3—Continued.

In this paper we will atiempt to minimize numerical errors generated at the corner
of the step so that all the various schemes will tend to converge to the same flow in
the limit of a very fine grid. To sccomplish this we apply an additional boundary
condition near the corner of the step. In the first row of zones above the step we will
reset the first four zones starting just to the right of the corner of the step; in the row
above we will reset the first two zones. In these zones we reset the density so that the
entropy has the same value as in the zone just to the left and below the corner of the
step. We also reset the magnitudes of the velocities, not their directions, so thit the
sum of enthalpy and kinetic energy per unit mass has the same value as in the same
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F16. 3—Continued.

zone used to set the entropy. This condition is based on the assumption of a nearly
steady flow in the region near the corner. It is clearly inappropriste at the very outset
of the calculation. These conditions remove the grossest errors generated near the
corner, but of course large errors in the flow direction there are bound to remasin.
These errors may be the cause of an overexpansion observed at the corner in all the
funs, although similar effects occur in wind wwnnel experiments of this type using real,
viscous air.

The time evolution, up to time 4, of the density distribution in the wind tunnel is
displayed in Fig. 3. The flow at time 4 is still unsteady. A steady flow develops by
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Fig. 3—Continued.

time 12 and is shown in Ref. |5]. Because this sieady flow has very little structure we
will focus here on the more interesting Now at early times. The results shown in
Fig. 3 were obtained with our best scheme, PPM, using a very fine uniform grid of
80 X 240 zones. On this grid the PPM scheme appears to have *“‘cssentiaily”
converged to its limit solution, 30 we may treat the results of the calculation as very
nearly correct. Nevertheless, numerical effects may still remain, such as the overex-
pansion at the carner of the step and the weak oblique shock caused when the overex-
panded flow finally strikes the upper surface of the step. These features do not appear
to change in position or strength as the grid is refined, but this does not necessarily
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Fi1G. 4. The sell-similar Mow resulting from the double Mach reflection of a Mach 10 shock from a
wall is shown. These results were obtained with the PPMDE scheme using = uniform grid with
dx =dy=1/120. Contours are plotted for {a) density, (b) pressure, (c) A = p/p", (d) v,, (e)
v, — 11.347. In each plot 30 equally spaced contours are shown, with the comour for the lowest level or
‘for any negative level drawn as a dotted line.
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FIGURE 4 (continued)

imply that they are real. Another numerical effect is the mild Kelvin-Helmholiz
instability (“water-wave” or “flag-waving” instability) of the contact discontinuity
along the upper wall. This instability is visible at times 2.5 and 3. The instability is
physical rather than numerical, but it is triggered by very small oscillations in' the
entropy behind the Mach shock. These oscillations are a numerical effect which is
subsequently amplified by a physical instability. -""""
' Bial 4

»

¢. Double Mach Reflection of a Strong Shock

This test problem was inspired by experimental and numerical studies of cet®ions
of planar shocks in air from wedges [39-41, 37]. The Mow can be set up experipen-
tally by driving a shock down a tube which contains & wedge. At first the simple
planar shock meets the walls of the tube at right angles, but when one wall beging to
slope a complicated shock reflection occurs. A self-similar flow develops at this point
which can be parameterized, for a given gamma-law gas, by the Mach number-sfithe
incident shock and the angle with which it encounters the reflecting wail of the

g
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wedge. Our test problem involves a Mach 10 shock in air (y = 1.4) which initially
makes a 60° angle with a reflecting wall. The undisturbed air ahead of the shock has
a density of 1.4 and a pressure of I.

The reflecting wall lies along the bottom of the problem domain, beginning at
x = /6. The shock makes s 60° angle with the x axis and extends 1o the top of the
problem domain at y = L. The short region from x =0 1o x = /6 along the bottom
boundary at y =0 is always assigned values for the initial post-shock Mow. This
boundary condition forces the reflected shock to be “attached™ to the reflecting wall.
The leN-hand boundary is also assigned values for the initial post-shock flow, and at
the right-hand boundary, at x = 4, all gradienis are set to zero. The values along the
top boundary are set to describe the exact motion of the initial Mach 10 shock. In
seiting up the problem this way we have attempted to make this test as casy as
possible to run on a standard hydrodynamics code. Also, by tilting the incident shock
rather than the reflecting wall we have avoided the complicated issue of how properly
to model a boundary oblique to the mesh. Our intent here is to compare numerical
methods for hydrodynamics, not methods for implementing boundary conditions,

The flow at time 0.2, computed by the PPM code on a fine grid with
dx=dy=1/120, is displayed in Fig. 4. Only the region between x=0 and x = 3 is
displayed in the figure, although the grid continues to x = 4. The parameters of this
test problem correspond to double Mach reflection of the shock at the wall. Two
Mach stems form, with two contact discontinuities. The second contact discontinuity
is extremely weak and is more casily noticed by the velocity jump across it than by
the density jump. The second Mach shock is rather weak, and it dies out entirely by
the time it reaches the contact discontinuity from the first Mach reflection. This
variation of the strength of the second Mach shock is very difficult to compule
accurately. At the point where the first contact discontinuity approaches the reflecting
wall the flow of the denser fluid is defected by a pressure gradient built up in the
region. The result is that a jet of the denser fluid is formed which shoots to the right
along the wall. This feature of the flow thus bears & similarity to the classic problem
of a “shaped charge” [42]. To compute the formation of this jet properly is extremely
difficult. A further computational difficulty is presented by the region bounded by the
second Mach shock, the curved reflected shock, and the reflecting wall. In this region
there is very little vertical motion. Therefore numerical methods whose dissipation
vanishes with zero flow velocity have a tendency to oscillate here.

The results shown in Fig. 4 are marred by a small numerical error. The problem
was initialized with a pure shock jump which was given the narrowest possible
description on the grid. Just such a precise shock jump was also set at the upper
boundary at each time step. Because the PPM method, like any other method
discussed here, must spread this shock out somewhat, a “starting error” is produced
during the short time required for the numerical representation of the shock to reach
a steady shock profile. This starting error takes the form of an overheated region of
about two zones in width. It is visible only in the plot of the vertical component of
velocity, v,. It appears as a thin strip extending from the upper right-hand corner of
each contour plot and reaching the bottom reflecting wall near x=2. A similar

“d
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starting error mars sll the computed results for this problem which are presented in
Section V1.

During the course of this study, a number of other test problems were investigated.
The three problems presented here involve most of the computational difficulties
encountered in this broader set of tests. We include all three problems here, because it
has been a common occurrence in the course of our work that a technique which
works well on two of these problems will fail on the third. This behavior can be
observed for a number of the difference schemes presented below.

-

V. REPRESENTATIVE NUMERICAL METHODS

a. Artificial Viscosity

The artificial viscosity approech is employed by so many difference schemes thaf it
would be impossible to present them all here. Instead, we have chosen representatives
from the two major classes of such schemes in general use. To represent the schemes
based on fully zone-centered data we have chosen MacCormack's method (43, a
variation on the Lax-Wendrolf scheme |44]. Despite the stabilizing influence of
dissipative truncation errors, MacCormack'’s scheme must be augmented by some
additional viscosity in order to control numerical oscillations near shocks and contact
discontinuities. We have added the antificial viscosity formulated by Lapidus [45).

We will represent the other major class of artificial viscosity methods by the
scheme BBC. The class BBC represents makes use of the spatially staggered grid
introduced by von Neumann and Richtmyer [1], and it also uses their artificial
viscous pressure, q. It is really only the Lagrangian step of the BBC scheme which is
of the von Neumann and Richtmyer type. This step is loliowed by a remap step from
a Lagrangian grid back to the original Eulerian one. This remap is derived from the
MUSCL algorithm of van Leer |4], adapted to the staggered grid. Thus the remap
step of BBC is actually a linear hybrid of first- and second-order advection schemes.
The Lagrangian step of the BBC scheme was devised by DeBar in 1968 for use in the
KRAKEN code |30]. It uses a two-step formulation to do away with the time-
staggered grid of von Neumann and Richumyer. It simplifies their approach still
further by centering velocity data at zone interfaces rather than at zone corners. The
2 — D Lagrangian step used in KRRAKEN was reformulated into component 1 — D
sweeps for use in the original BBC code [46]. This method was [ater made second-
order accurate by the addition of a MUSCL remap step modificd and adapted to the
staggered grid by Woodward. The present BBC scheme is described in detail in the
Appendix.

b. Linear Hybridization

The linear hybridization approach will be represenied by the single method
ETBFCT of Boris |33] based on the ideas discussed by Boris and Book in [32]. This
method is used currently in the code FAST2D, and results for a problem similar to
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our double Mach reflection problem which were obtained with this method have been
published recently |40]. A more thorough investigation of the antidiffusion approach
than can be given here is now under way and will be published separately |36]. We
have implemented the ETBFCT scheme in separate | — D sweeps in a sequence xpyx.
This results in second-order accuracy for 2 — D computations (cf. [47]).

Boris recommends that ETBFCT be run at a Courant number less than one-half.
lkeda and Nakagawa have derived a slightly different and more restrictive limit on
the Courant number for the SHASTA FCT algorithm [48]. They demonstrate that
the method can generate small rarefaction shocks when their limit on the Courant
number is exceeded. The results presented below were run at a Courant number of
0.4. The results are not significantly improved when the Courant number is lowered
to 0.1. Any further reduction of the Courant number would be impractical.

c. Godunov's Approach

The approach of Godunov will be represented here by three difference schemes.
The first, a single-step Eulerian version of Godunov's method, has been described by
Godunov [49]. Simplified versions of Godunov’s method are often used, as, for
example, in the review of Sod [12). Therefore the reader should note that the version
used here employs the full nonlinear Riemann solver described by Godunov (49,
modified for second-order convergence of the interations as described by van Leer in
|5} and simplified in its treatment of rarefactions as described in [13]. This version of
Godunov's method gives the most accurate representation of shocks and their
interactions.

A simple second-order scheme of this class is also studied here. It is a simplified
version of the MUSCL scheme described by van Leer in |5], and it borrows some
techniques from an advection scheme described by van Leer in [4]. It performs the
Eulerian calculation in a single step, analogous to the MUSCL scheme described by
Colella in [8]. The method described in |5] cannot handle very strong shocks, 50 our
MUSCL has been revised to do so. Stephen Hancock |50] has independently devised
a different means of handling strong shocks in MUSCL, and this method has been
discussed by van Leer in |51]. Our simple MUSCL scheme is essentially the same as
the scheme described in [8], except that slopes of the varinble distributions within
zones are obtained simply by differencing the average values of the variables in
neighboring zones and applying van Leer’s monotonicity constraint. We have
included this scheme in our study to show what sort of performance may be expected
from a relatively uncomplicated extension of Godunov's approach to second-order
accuracy.

The most accurate scheme presented here involving a nontinear Riemann solver is
PPM, the piecewise-parabolic method. Previous versions of this scheme have been
discussed in 7] and in |21}, and the present version will be described in detail in a
subsequent article [9]. Three key ingredients are responsible for the accuracy of the
PPM scheme: (1) a Riemann solver to compute fully nonlinear wave interactions, (2)
high-order interpolation techniques to properly describe the information present in the
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F1a. 5. A single time step in the computstion of a strong shock using the PPM scheme. Velocities
src displayed for 5 zones representing various siages in the computstion. See the discussion in
Section ¥c of the text. (a) Interpolation parabolae (solid lines) are constructed from the original zone-
averaged data (dotted lines). The shock is only one zome wide. {b) Dawa are obtained for Ricmann
problems which will give lime-averaged fluxes at zone interfaces in a Lagrangian step of the calculation.
The data (solid lines) arc obtained by averaging the interpolation parabolse (dotted lines) over the
domains of dependence of each zone interface. (c) The solution of the Riemann problems (represented by
dotted lincs) gives effective velocily gradients within the zones (solid lines) which compress the
Lagrangian zones. (d) The compressed Lagrangian zones are shown by solid lines with internal
structures inferred from zone-averaged dats by the construction of new interpolation parabolac. New
averages are computed using these parabolae for the original Eulerian zones {dotted lines). The shock
s moved § of a zone width and is again only one zone wide, .

domain of dependence of each zone interface, and (3) special montonicity constrgigts
and discontinuity detectors which help to keep discontinuities as sharp as possible
without unphysical oscillations or unphysical steepening of the local gradients. *y,
The concerted action of the above three key ingerdients of PPM is best appreciated
by looking at a particular example. In Fig. 5 the operation of the PPM scheme is
shown in detail for the case of an isolated, fairly strong shock traveling to the right
into a uniform gas at rest. The pressure and density ahead of the shock are both
unity. The gas has a gamma-law equation of state with a gamma of 1.4. Behind the
shock the pressure is 16, the density is 4.4091, and the velocity is 3.4056...The
Eulerian zones are 0.2 length units wide, so that in the time step of 0.034056, the
shock moves to the right three-Quarters of a zone width.

-
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The process of computing a single time step for five zones near the steady shock
structure is displayed in four stages in Fig. 5. In Fig. 5a the dotted horizontal lines
show the zone-averaged values of the velocity in the zones at the beginning of the
time step. From this data the PPM scheme constructs interpolation parabolae which
represent the distributions of the velocity within the individual zones with respectto a
mass coordinate. These interpolation parabolae are shown as solid lines in Fig. 5a. In
regions of smooth flow the resulting velocity distribution is continuous &l zone
interfaces, but in the case shown here discontinuities in the distribution have been
introduced at some zone interfaces near the shock. These discontinuities are the result
of two constraints: first that the interpolated parabolae within the zones must give
back the original data when averaged over the zone masses, and second that they
must also be monotone increasing or decreasing, with all values lying in the range
defined by the zone-averaged velocities in the particular zone and in its two nearest
neighbors. The representation of the shock on the numerical grid is too sharp to
permit a continuous velocity profile under these constraints.

The version of the PPM scheme displayed in Fig. 5 is PPMLR, which performs an
Eulerian calculation by breaking it up into a Lagrangian step in which pressure
forces accelerate the zones and a subsequent remap step in which the effects of the
fluid motion relative to a fixed grid are calculated. PPMLR moves the zone interfaces
in the Lagrangian step, and hence computes zone compressions, by calculating
approximate time-averaged interface velocities. This calculation is performed in three
steps. First the domains traversed by sound waves reaching a zone interface during
the time step are determined. For this purpose the sound waves are assumed to travel
with the appropriate zone-averaged sound speeds. These domains of dependence are
then represented by constant states of the gas which are obtained by averaging the
interpolated spatial structure oves the domains. The constant velocities so obtained
and the spatial extents of the domains of dependence are shown by the solid lines in
Fig. Sb. The dotted lines show the original interpolated velocity structures for com-
parison.

The purpose of averaging over the detailed structure contained in the domains of
dependence of the interfaces is to allow the nonlinear hydrodynamic interaction of
these domains to be computed by solving Riemann's shock tube problem. The results
of this computation can be inferred from the solid lines in Fig. Sc. These display
velocity distributions which are linear with respect to a mass coodinate and which
join the time-averaged interface velocitics computed from the Riemann problems.
These velocity distributions may be regarded as the effective time-averaged
distributions which compress the zones in the shock structure during the time step.
The dotted lines in Fig. S¢ show the distribution from Fig. 5b for comparison. For
this case of an isolated shock, the effect of solving Riemann’s problem has evidently
been 10 equate the time-averaged interface velocity to the average velocity in the
“upstream” domain of dependence. This choice of the interface velocity has kept the
velocity gradient in the center zone in Fig. Sc from being too large and has therefore
prevented an overcompression of that zone during the time step. Of course, the
monotonicity constraint which caused the large initial velocity jump at the right-hand

v 3
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interface has also played an important role in limiting the effective velocity grnqiem
used to compress this zone. :

The final remap step of PPMLR is illustrated in Fig. 5d. The solid lines in the
figure show interpolation parabolae representing the velocity distributions within
Lagrangian zones at the end of the time step. These velocity distributions are used, to
compute mass-weighted velocity averages within the original Eulerian zones. These
averages are indicated by the dotted lines in the figure. Of course, mass-weighied
averages are computed so that momentum is conserved in the process. Note that
although the shock has moved three-quaters of a zone width in a single stepPahe
representation of the shock remains sharp without introducing post-shock oscillations.

The PPMLR scheme illustrated in Fig. 5 has been used to compute the MNow.ishe

Mach 3 wind tunnel which is shown in Fig. 3. For this particular problem additional
features of the method in treating shock discontinuities are impriant which dd"aot
come into play in the example in Fig. 5. When strong shocks travel slowly relative to
the grid, as do all the shocks in the wind tunnel problem after time 2, the shock
structures must be broadened to about 2 zone widths in the worst cases in order to
prevent post-shock oscillations of about I to 2% in amplitude from developing. Such
post-shock oscillations cannot be effectively damped behind the shocks, because the
wavelengths of the oscillations are many zone widths in the case of slowly moving
shocks. They must therefore be prevented by broadening the shock structure
somewhat. This broadening is performed by two methods. First, the interpolated
parabolic structures are flattened somewhat. Second, the grid to which the remapping
is performed is jiggled slightly about its original position as the shock passes, so that
the effective speed of the shock relative to the grid cannot vanish.
. A similar broadening of the shock can be obtained by flattening the interpolated
structures in shocks and by adding a small Lapidus artifical viscosity 10 lhe”r:ﬁnod.
with a coeflicient of 0.1—a cocfficient a tenth the size of that u with
MacCormack’s scheme in the 2 — D problems presented in this study. This simpler
approsch to shock broadening, however, gives a diffusive error term in smooth flow
which is third-order small, while the other approach of jiggling the grid gives an efror
which is fifth-order small. These approaches are described in detail in [9], and they
may be compared by studying the results of the double Mach reflection problem
shown in Figs. 4 and 9f. These results were both obtained using a single-step Eulerian
formulation of PPM, which we will refer to as PPMDE. In Fig. 4 the grid has been
jiggled slightly near shocks, while in Fig. 9f a Lapidus viscosity with a coefficient of
0.1 has been used. The singie-step Eulerian formulation of PPM is constructed oféthe
same principles as the method with separate Lagrangian and remap steps, but is
somewhat more complicated to describe. 1t is discussed in detail in [9).

Recently much atiention has been given to approximate methods for solving
Riemann's problem |51-54,56]. In the schemes studied here we have used the
approximate Riemann solver described in [13]. This approximates rarefactions by
rarefaction shocks. We have used a Newton iteration with this method, so that'fhore
than two iterations are never required. For all but very strong shocks, a,iingle
iteration is sufficient. In the interacting blast wave problem, two iterations have Been
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used. In the single-step Eulerian codes, special provision for the spreading of a
rarefaction fan must be made in the Riemann solver under certain special conditions
(cf. [13]). The overall process is very fast on a CRAY-1 computer, and in the PPM
scheme very little extra speed can be gained by simplifying this Riemann solver
further. We believe, however, that approximate Riemann solvers like those devised by
Harten and Lax [53] and by Roe |54] will be in much greater demand when larger
systems of conscrvation laws, such as the equations of magnetohydrodynamics, are
attacked.

V1. CompuTED RESULTS FOR THE THREE TEST PROBLEMS

a. Two Interacting Blast Waves

This one-dimensionsl problem provides the most convenient basis for a thorough
comparison of the various numerical methods. We have run the problem with each
method using 9 dilferent uniform grids, of 100, 150, 200, 300, 400, 600, 800, 1200,
and 2400 zones. Each result at time 0.38 has been compared to a converged result
obtained using a special version of PPMLR with a grid of 3096 zones, as described
earlier in Section IVa. This special version tracks the two contact discontinuities
which emerge from the initial pressure jumps by treating this as a flow conraining
three distinct fuids. This version of PPMLR also refines the grid automatically by a
factor of 8§ near all discontinuities in the Nlow and also near the two reflecting boun-
daries. This code yields a solution for the interacting blast wave problem which is as
close to the exact solution as is necessary to accurately measure the errors produced
by the difference schemes considered here. For the solution obtained with each
scheme on each grid the fractional error, &, was computed:

nI/z

% I<p)l (o)luocl l -

Here N is the number of zones in the coarse grid, {p), is the average density in zone {
of the coarse grid calculation, and {p), .., is an appropriate average over values
from the special 3096-zone run of PPMLR. For each run the number of seconds of
CPU time on the CRAY-| was measured. This time includes no input—output or
plotting costs, only raw compution. It does include the computation of an equation
for a transverse velocity component (which was always set to zero). Thus speeds for
2 —~ D calculations are precisely half of the | — D speeds. These 1 — D speeds, and
the integrated fractional errors, are tabulated in Table L.

To one familiar with only linearized error analysis, the results in Table | will come
as a shock. In the last column a convergence rate is tabulated. It is derived from a
one-sided difference approximation to the logarithmic derivative of the error with
respect to the zone width. Of the schemes in the table, only Godunov's scheme is
formally first-order accurate. All the others are formally second-order accurate.
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TABLE 1
Courant Time CPU Fractional  Convergence

Scheme No. Zoner steps ec. error rate
MacCormack 0.8 200 400 0.278 0.261 0.32
360 604 0.595 0.209 0.4%
400 806 1.05 0.181 0.53
600 1216 2.3 0.143 0.55
800 1624 411 0.114 Q.66
1200 2446 9.19 0.0862 0.72
ABC 0.8 200 X F) 0.456 0.19¢ 043
300 490 0.962 0.167 0.4]
400 652 1.6% 0.145 0.44
600 970 i 0112 0.57
800 1288 6.48 0.0920 0.65
1200 1926 14.5 0.0717 0.64
ETBFCT 04 200 810 1.37 0.227 0.51
300 1216 P4 | 01719 0.55
400 1618 5.12 0.130 0.81
600 2426 d1.2 0.10} 0.80
80C 234 198 0.0787 0.72
1200 4848 440 0.0606 076
Godunov 08 200 378 0.588 0.330 0.15
300 568 1.27 0.293 0.24
400 160 2.28 0.274 0.27
600 1148 5.05 0.241 0.28
800 1536 893 0.215 0.35
1200 2320 20.1 0.182 0.40
MUSCL 0.8 200 408 1.36 0.162 0.46
300 o608 293 012} 0.65
400 1+ ] 547 0.0996 0.70
600 1208 11.4 0.0723 0.77
800 1610 200 00553 085
1200 1412 4.9 0.0401 0.85
PPMDE 0.8 200 414 1.65 0.0990 0.61
300 616 1.52 0.0639 1.05
400 818 6.20 0.0467 1.08
600 1222 13.7 0.0303 1.08
800 1626 42 0.0218 1.10
1200 un 537 0.0144 1.07

PPMLR 08 200 310 1.6 0.0760 096
300 454 Ju 0.047¢ 114
400 598 599 0.0376 1.02
600 888 12.1 0.0264 0.85%
800 1174 130 " 0.0208 0.87
1200 1746 508 0.0131 0.98
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Fio. 6. Results for the interacting blast wave problem of Fig. 2 using 7 different numerical
_ methods-~{a) Godunov's method, (b) MacCormack's method, (c) BBC, (d) ETBFCT, (¢) MUSCL, (N
PPMDE, and (g) PPMLR. Results are shown as dots for grids of 200 and 1200 zones. The solution
obtained with the special version of PPMLR on s grid of 3096 zones is drawn for comparison in cach
figure as & solid line. Godunov's scheme gives unacceptable smearing of the three contact discontinuities
while the shocks are only two zones wide. MacCormack’s, scheme gives brosder thocks, with widths of
three zones, while the contact discontinuities are sharper, bul not sharp enough. BBC gives very similar
performance to MacCormack’s scheme on this problem. ETBFCT gives shocks only one rone wide, but
it introduces & spurious contact discontinuity at the site of a discontinuity in the density slope. MUSCL
performs very well on this problem, giving shocks one zone in width and contact discontinuities
adequately resolved on the 1200-zone grid. The two formulations of PPM, PPMDE, and PPMLR give
excellent and very similar results. Even on the 200-zone grid the lwo ouler contact disconlinuities are
only one zone in width. Detailed comparisons of accuracy and CPU lime for these runs can be made
from the data in Table I.
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However, the error from Godunov's method starts off by converging toward zero as
(4x)®'* and on the finest grids it is converging as {A4x)™*. This is very poor perfor-
mance for a nominally first-order scheme. In fact, only the error of the PPM scheme
converges 10 zero as fast as dx. All the other schemes show less than linear
convergence. Clearly, a linear error analysis based upon the assumption of smooth
flow is entirely inappropriate to this sort of nonlinear problem.

Convergence is slow for this problem because the errors are mainly introduced at
the discontinuities. In fact, our definition of the fractional error £ implies that in the
limit of an extremely fine grid £ can converge to zero no faster than 4x. No matter
how accurately we describe the smooth flow, large errors must occur at discon-
tinuities which are spread over distances proportional to dx. The computed results
are displayed in Fig. 6 for the grids of 200 and 1200 zones. The solid lines show the
special 3096-zone PPMLR results, while those of the various schemes are indicated
as dots (one dot per zone). Both PPMDE and PPMLR have essentially converged on
the 1200-zone grid. However, these are the only schemes 1o do so. The discontinuities
which appear in the plots of Fig. 6 are, from lef to right, the contact discontinuity
which originally formed at x = 0.1, the shock which originally formed at x = 0.9, the
contact discontinuity which formed when the two shocks collided, the contact discon-
tinuity which originally formed at x = 0.9, and the shock which originally formed at
x = 0.1. The hardest of these to represent are the conlact discontinuities on the lefi
and in the middle. Most of the error is generated in thesc features. The ETBFCT
scheme also encounters difficulty at a discontinuity in the density slope. This discon-
tinuity in slope marks the mass element which had just passed through the shock
from the lefi-hand biast wave when the rarefaction wave reflected from the left-hand
wall first reached that shock.

The results in Table | clearly indicate that the PPM scheme delivers the greatest
accuracy at the least cost. Interpolating in the table we find that to match the
accuracy of the 200-zone run with PPMLR the other schemes require more computer
time by the following factors: 1.6 for PPMDE, 6.2 for MUSCL,, 7.4 for.BBC, 8.0 for
MacCormack's scheme, and 11.5 for ETBFCT. The numbers of zones required are:
256 for PPMDE, 563 for MUSCL, 845 for ETBFCT, 1093 for BBC, and 1431 for
MacCormack’s scheme. Godunov’s scheme cannot match the accuracy of PPMLR
on the coarsest grid, even if it is given twelve times as many zones. Because the PPM
schemes perform the entire nonlinear computation for all zones, the time comparisons
given above would all grow by an additionat factor of 2 or so if the PPM schemes
were programmed to evaluate equivalent but much simpler difference equations in the
smooth parts of the flow.

Due 1o the presence of strong contact discontinuities in this test problem it was
necessary to augment the Lapidus viscosity in the calculations using MacCormack’s
scheme. In the Lapidus viscosity the diffusive flux at a-zone intesface, i+ 1§, is
multiplied by a coefficient proportional to the absolute value of the velocity difference
. of the neighboring zones, |u,— &, ,}. We have added 1o this a term |c, - c,,,|/10,
where ¢, is the speed of sound in zone /. This term damps the Gibbs oscilations which
would otherwise result near contact discontinuities which move through the grid.
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The timings for PPMLR and BBC are aided by the larger time steps which the
spliting of these schemes into separate Lagrangian and remap steps allows,
particularly for this problem. For these schemes the time step is limited by the
maximum of the fluid velocity and the sound speed rather than by the maximum of
their sum or difference. We should also point out that ours is not the fastest version
of MUSCL conceivable. We have followed the approach of Ref. |8], which requires
two solutions to Remann's problem to update a zone, while the PPM methods require
only a single Riemann solution. A MUSCL scheme can be formulated along the lines
of PPM, and such a scheme would run a bit faster. We have presented results of the
older formulation here in order to illustrate why the additional features of the PPM
formulation are desirable. Finally, it should be noted that time requirements for
multidimensional runs of the sort presented here would be spread over a much greater
range for these schemes, because the computation time depends upon higher powers
of (1/4x).

b. A Mach 3 Wind Tunnel with a Step

Resuits for all the representative difference schemes on the wind tunnei problem
described in Section1Vb are shown in Fig. 7. For each scheme the density
disteibution is shown at time 4 as computed on three different grids; dx = 4y = 1/20,
Ax = 4y = 1/40, and Ax = Ay = 1/80. Thirty equally spaced contours are shown in
each plot, with the extreme contour levels given in the figure legend. IT the extreme
values in the computed zone averages are p,,;, and pp,,. then the extreme contour
levels are (P + Puas)/2 £ (29/60)(Pgx — Pwin)- The density distribution is the most
difficult to compute for this problem, because of the weak contact discontinuity
caused by the Mach reflection of the bow shock at the upper wall. Results are shown
for three grids to give a visual impression of the manner and rate of convergence of
cach scheme. For such 2 — D problems, accuracy is a rather subjective quantity, and
a full display of results on different grids allows each reader to judge for himself how
the various schemes perform. All of these schemes are insensitive to the Courant
number used, so long as it is small enough for stability. Most of the runs were made
at & Courant number of 0.8. Runs with smaller Courant numbers required these time
step reductions for stability. '

It is natural to expect the least accuracy for this problem to result from using the
only first-order scheme in our study, Godunov's scheme. A careful look at Fig. 7
shows this expectation to be fulfilled, but not by the large margin we might, fsave
anticipated. In some respects, such as the position of the shock reflection at the upper
wall, the Godunov results on the coarsest grid are even superior 10 those . of
MacCormack’s second-order-accurate scheme. In fact, the Godunov results are
roughly comparable in accuracy to those of MacCormack’s scheme on ali three grids.
Thus, even the rates of convergence of these methods are comparable. This example
iflustrates the limited usefulness of linearized error analysis for nonlinear probiems of
this type.

The surprisingly good performance of Godunov's scheme on this particular flow
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Fig. 7. Results at lime 4 are plotted for the Mach 3 wind tunnel problem displayed in Fig. 3 and
discussed in Section IVb. Density contours are shown for three grids, with 4x = dy = 1/20 st the top,
Ax = Ay = 1/40 in the middle, and Ax = dy = 1/80 al the bottom.

Fio. 7. Godunov's method. The general shape and position of the shocks is not correct, even on
the finest grid. The Mach stem at the upper wall is absent on the coarsest grid and is too short and too
far downstream on both finer grids. The shocks are very thin where they are strong, nearly siationary,
and nearly aligned with the mesh. A numerical instability of 2 — D, strong, stationary shocks is evident
on all grids near the bottom wall and on the finest grid behind the Mach stem. This instability is more
clearly illustrated in Fig. 8. The contact discontinuity emerging from the three-shock intersection is not
smeared out as much as we might expect because this contact discontinuity is nearly aligned with the
mesh. A strong numerical boundary layer along the step in the duct causcs & sccond, spurious Mach
reflection which is not diminished as the mesh is refined. Finafly, unphysical rarcfaction shocks are
produced on all grids near the sonic line just above the corner of the sep.
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Fia. 7. MacCormack’s method. Despite the higher formal order of accuracy of this method, the
general shape and position of the shocks it computes for this problem are roughly equivalent to those
computed with Godunov's method. The Mach stemn is absent on the coarsest grid and too short and 100
far downstream on the finest grid. The shocks have a fairly uniform width of 2 to 3 zones, and they are
accompanied by mild pee- and post-shock oscillations. There is considerable smearing of the contact
discontinuity generated at the Mach reflection near the upper wall. Also, 8 numerical boundary layer
along the 1op of the step in the duct causes & spurious Mach reflection at the step, but this Mach stem is
only lwe zones long. The numerical boundary layer may be identified downstream from this Mach stem
by the sudden kinks in the density contours. These are most evident on the fincst grid. Finally, the weak
shock originating near the comer of the siep in Fig. 3¢ and the contect discontinuity formed when this
shock merges with that reflected from the step are nol resolved by MacCormack's method, even on the
finest grid.
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Fig. Tc. BBC. This method gives a more accurate representation of the general shape and position
of the shocks than do ¢ither Godunov's or MacCormack’s methods. The Mach stem is just visible on the
coarsest grid, and it is almost correct on the finest grid. BBC gives roughly the result in this respect that
MacCormack’s method would on grids with /2 times a3 many zones in each direction. Therefore BBC
is roughly a factor of 1.2 more efficient than MacCormack's method in solving this problem. The 8BC
shocks are about two zones wide. They are somewhat thinner than the MacCormack shocks, as is
evident from the coarse grid results, and there are no pre- Of post-shock oscillations. However, the shock
has a small influence one zone upsiream from the principal two-zone jump, a3 can be seen on the coarse
grid. There is & bit less smearing of the contact discontinuity than with MacCormack’s method because
of the MUSCL remap step in BBC. However, the numerical boundary layer above the siep is very
strong. and spurious Mach reflections are produced. This is lnrgely & result of the difTiculty of applying
an appropriate boundary condition at the corner of the stcp when 8 siaggered grid is used.
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Fig. 9. ETBFCT. Most notable is the staircase appearance of the contour lines. Possible causes for
this are discussed in the text. Aside from this jitter, the sccuracy of the general shock shape and position
is extremely good. The Mach stem has the correct length and position on the middle grid. The shocks
are extremely narrow except for broad preshock regions of substantial velocity and pressure undershoots
which are delineated by low-level density contours upstream from the leftmost shocks. The contact
discontinuities are very sharp when present. However, the contact discontinuity arising from the
coslescence of the weak shock from the corner of the step and the shock reflected from the step appears
in the wrong place on the finest grid, and, inexplicably, il sppears on the coarse grid despite the absence
of the weak shock which causes it. In addition, on the coarse grid the contact discontinuity near the
upper wall does not eppear, deapite the length of the Mach stem. Finally, 8 numerical boundary layer
along the top of the step in the duct produces spurious Mach reflections there which do not diminigh s
the mesh it refined. T
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Fi. Te. Single-step Eulerian MUSCL. The general position and shape of the shocks are as sccurate
as those computed by ETBFCT, while the jitter and spurious glitches produced by that scheme are
absent. The shocks are extremely narrow, only a zone wide, without over- or undershoots. In fact, the
shocks are 100 narTow, 3o that the numerical instability of strong, stationary shocks nearly aligned with
the mesh develops near the bottom wall and behind the Mach mem. The entropy contour plot in Fig. 8
shows this instability more clearly. The contact discontinuities are spread somewhat, bul both appear on
the middle grid and the one near the upper wall can be seen on the cosrse grid. Also note that the eflects
of the numerical boundary layer along the top of Lhe step in the duct are very wesk. The weak shock
from the corner of the step is resolved on both finer grids.
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Fig. . Single-step Eulerian PPM, or PPMDE. The general position and shape of the shocks are
slightly less accurate than those computed by MUSCL or ETAFCT, but essentially all numerical noise
has been climinated from the solution. The shocks are slightly broader than for the MUSCL calculation,
but they are still essentially one zone wide, The length and position of the Mach stem are correct oy jhe
middle grid. The spreading of Lthe contact discontinuities is very slight, and both are resolved on-the
middle grid. The effecis of the numerical boundary layer along the top of the step in the duct are also
very slight. Also, the weak shock from the corner of the step is resolved on both finer grids. The gpmesal
accuracy of the compuled Nlow is roughly equivalent to a BBC calculation with two times 83 many zoncs
in esch direction and 1o a calculation with MacCormack's scheme using 2 /2 times as many zones in
each divection. Thus PPMDE is more efficient in solving this problem then BBC by roughly a factor 1.6,

and relative 10 MacCormack's scheme this factor is roughly 4.4.
"
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Fia. 7g. PPMLR, or PPM formulsted as & Lagrangian step followed by & remap. These results are
essentially equivalent 1o those computed with PPMDE. These caiculations require 18% more computer
time, 3o the costs of the calculations are roughly equivalent as well. The shocks are slightly brosder than
for PPMDE where they are strong and sieady, that is, just ahesd of the step and at the Mach stem, but
they arc thinner where they are weak and in motion, that is, at the regular reflections on the step and at
the upper wall. The contact discontinuity near the upper wall is smoother than for PPMDE because this
unstable slip line has sulfered smaller numerical perturbations at earlier times in the calculation (see
Fig. 3b). On the finer grids the effects of the numerical boundary layer along the top of the slep are also
slightly smaller than for PPMDE. Efficiency factors in relation 10 BBC and MacCormack’s scheme arc
roughly 1.0 and 3.7, respectively.
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problem is the result of its very narrow representation of nearly steady shocks. By
time 4 nearly all the shocks in this problem are moving very slowly. Because the
Riemann solver permits Godunov's method to represent a steady shock at a zone
interface as a pure discontinuity, shocks which are nearly steady are very thin. When
they are nearly at a zone interface they are represented by almost a pure jump, and
otherwise one zone makes up the entire internal structure of the shock. This can be
seen especially well on the coarse grid results. The plotting routine linearly inter-
polates between zone-averaged data. Thus when the shock is shown as a dark vertical
bar, many contours have crowded in between two zone-averaged dsta values and the
shock consists of nearly a pure jump. As we look upward slong the bow shock
starting at the bottom boundary, we can see the shock location shift from one zone
interface to another, becoming periodically thicker and thinner as it does so. This
behavior is most marked near the lower wall, because this part of the shock is
strongest and moving most slowly.

The narrow steady shock structures produced by Godunov’s method are respon-
sible for its accuracy on this flow problem. However, these narrow structures also
lead to difficultics. There is a tendency for noise to be emitted from the places where
the shock relatively suddenly shifts over from one column of zones to another. This
noise can be seen near the lower wall, where the Mow velocity is so smail that the
noise is not damped effectively. The MUSCL scheme shows an even greater tendency
to produce this sort of noise, because it has far less damping in regions of smooth
Nlow. The noise is most noticeable on the finest grids.

To further elucidate the cause of this noise, the adiabatic constant, 4 =plp’, is
plotted in Fig. 8 for the MUSCL run on the finest grid. The fluctuations in the
entropy generation at the shock at the bottom wall are fairly substantial. These are
accompanied by fluctuations of about the same size in the velocity jump at the shock.

L] OVel wol -0 COUMNTSD 00D, PRLFREE 1Bt t LLBOMD
30 CONTOUNE, & J3E-01 10 1. 172000 LICR]! T = 4 MOORNE +08

Fia. 8. Contours of the quantity 4 = p/p?, which is a function of the entropy, for the MUSCL
computation of the wind tunnel using the finc grid Ax = 4y = 1/80. Errors introduced at an unphysical
kink in the Mach shock near the upper wall are amplified by a physical instability. the Kelvin-
Helmholiz instability. This numerical effect arises when a sitong, narrow shock moves very slowly
relative to the grid and is nearly aligned to it. This effect can be eliminated by increasing the dissipation
of the numerical scheme near such a shock, so that the shock is broadened slightly.
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At the shock near the upper wall, the source of these fluctuations at a sudden shift in
the shock position from one column of zones to another is clearly visible. The sianted
regions of alternately high and iow entropy behind this Mach shock show how this
sudden shift in the shock location has moved vertically along the Mach shock in the
past. The periodicity of these entropy perturbations is perfectly matched to that of a
Kelvin-Helmholtz instability (“water-wave™ instability) of the contact discontinuity
near the upper wall. The perturbations caused by the motion of the kink in the Mach
shock have apparently been amplified by the physical instability of this slip line. In
the results of both PPM schemes, PPMDE and PPMLR, the nearly steady shocks
have been broadened slightly so that hardly any noise is produced behind them. As
we have noted in Section Vc, this is accomplished by fattening of the internal zone
structures for zones inside such shocks and, for PPMLR, by jiggling the grid slightly,
and for PPMDE by the addition of a Lapidus artificial viscosity with a coefficient of
0.1.

Like MUSCL, the ETBFCT scheme produces very thin shock structures. From the
above discussion we might expect them to create considerable noise in the smooth
part of the flow, This appears o be the case. Particularly in the coassest run,
bunchings of the density contours can be traced to kinks in the shocks. However, the
noise in the ETBFCT results has a different appearance than that produced by the
MUSCL code. It is not limited to regions of small flow velocity in either the x or the
y direction, but instead the noise is pervasive, It appears that either the noise is not
sufficiently damped in the smooth flow or it is generated there as well. Especially on
the coarser grids there is & marked tendency to oversteepen the gradients in the
centered rarefaction fan, so that the density contours take on a staircase appearance.

Another feature of the thin shocks in the ETBFCT runs is not so apparent from the
density plots shown in Fig. 7. A single density contour well in front of the main
shock structure marks the extent of the preshock region which has been unphysically
influenced by the shock. In this region substantial negative pressures are calculated
which must be reset to floor values, The reason for this error is that the monotonicity
constraint which determines the shock structure only guarantees monctone profiles
for the variables p, pu,, pu,, and pE, where E is the tolal energy per unit mass.
Therefore the pressure profile need not be monotone. Neither MUSCL nor PPM has
this difficulty. This may be because these schemes apply monotonicity constraints to
~ the variables p, p, u,, u, instead. It should be noted that the computational costs for

ETBECT and MUSCL are practically identical. The MUSCL scheme therefore
computes equally thin shock structures as ETBFCT at the same cost and without so
much noise generation, We see in Fig. 7 that all noise errors are removed by the PPM
schemes and the treatment of contact discontinuities is improved at an additional cost
of about 20% in compuler time.

The BBC scheme represents a combination of a Lagrangian step using an artificial
viscosity and a remap step using a modification of the MUSCL linear hydridization
of first- and sccond-order advection schemes. The artificial viscosity in the
Lagrangian step spreads the shock enough to eliminate the problems associated with
thin shocks which we have been discussing. Also the modified MUSCL remap helps
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to keep the contact discontinuity sharp. In contrast Godunov's scheme and
MacCormack’s scheme spread the contact discontinuity more as it moves away from
the three-shock intersection point. ETBFCT keeps this contact discontinuity very
sharp, as does PPM., In the case of PPM this sharp conlact discontinuity results from
the use of parabolae to describe internal zone structures coupled with a special
discontinuity detection algorithm. These features keep contact discontinuities as sharp
as shocks in PPM runs.

The slowest feature of the computed flow to converge Lo its true value is the length
and location of the Mach stem. This is directly related to the time at which the Mach
stem first forms in the calculation. Because the formation of a Mach stem is a
threshold phenomenon, this formation will occur too late if the shock is spread out
over too wide a region. For Mach 3 wind tunnels with steps, our particular test
problem is near the transition from a steady fow with a regular shock reflection at
the upper wall (this occurs for steps of somewhat lesser height) and flows which
involve Mach reflection. For our test problem a Mach stem forms at about time 1.5
and moves very slowly upstream along the upper wali. If the shocks are smeared out
too much in the computation, the Mach stem lorms late and does not reach its proper
position at time 4.

Even on the finest grid MacCormack’s scheme does not obtain the proper Mach
stem location. Therefore despite the great speed with which this method can update a
zone, it requires an impractically large number of zones, time steps, and computing
time 10 compute the correct answer to this simple test problem. Godunov’s scheme is
not practical either for solving this problem. It computes the Mach stem location
well, but smears the contact discontinuity over several zones. The Godunov results
are -also marred by bits of noise generated at kinks in the shocks and also by an
unphycical rarefaction shock embedded in the centered rarefaction fan. This little
rarefaction shock occurs where the Mach number of the flow is unity, so that one
characteristic speed vanishes in the x-pass of the computation. The rarefaction shock
is then allowed because of a subtle property of the scheme related to the fact that the
ersor in the computed flux at a zone interface where the flow is sonic is one order
smaller than everywhere else. The ETBFCT and MUSCL schemes compute the
correct Mach stem location on the coarsest grid and with the least computer time.
However, the thin shocks which make this possible cause underisable noise to enter
the solution. Significantly less noise is generated by the MUSCL scheme, but if a
smooth result is desired, the PPM schemes will produce the correct Mach stem
location in the least time and on the coarsest grid.

It is interesting 10 note that two formulations of PPM, with a single Eulerian step
and with a Lagrangian step followed by a remap, produce slmost identical results.
The two schemes also require almost identical amounts of time to update a zone. For
multifluid problems the formulation with a separate Lagrangian step is much more
convenient, while the single step Eulerian form is better suited to problems with
complicated spatially dependemt source terms. The two schemes can apparentlysbe
used interchangeably according to the nature of a particular application without
concern about loss of accuracy or computing speed. '
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FiG. 9. Results at time 0.2 are plotied for the double Mach reflection problem displayed in Fig. 4
and discussed in Section IVc. Density contours are shown for three grids, with dx = Ay = 1/30 at the
10p. 4x = dy = 1/60 in the middle, and dx = Ay = 1120 at the bottom.

FiG. 9s. Godunov's method. The jet formed by the double Mach reflection is unresolved on even the
finest grid. The strong shocks are about two zones wide with no under- or overshoots; however, the weak
shock genersted at the kink in the main reflected shock is extremely broad.

¢. Double Mach Reflection of a Strong Shock

Results for the various difference schemes on the double Mach reflection problem
described in Section IVc are shown in Fig. 9. Again, we show results on three grids
— Ax = Ay = 1/30, Ax = Ay = 1/60, and dx =dy = 1/120 — to permit the reader to

.
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Fio. %b. MacCormack’s method. These results are far superior 1o those of Godunov’s method. The
jet produced by the double Mach reflection is described faifly well on the finest grid and adequately on
the middie grid. The resuts on the coarse grid are poor. The shocks ase fairly broad, 2 to 3 rones~with
pre- and post-shock oscillations. The orcillations are particularly severc where the shock is moving
slowly and is nearly atigned with the mesh. An unphysical structure near the main three-shock imigy-
section is most noticeable on the coarse grid.

o
make his own assessment of the performance. of these schemes. Because of the impor-
tance of contact discontinuities in this flow, density contour plots ace shown in Fig!9.
The most complicated structures in the flow are in the rather small region of the
double Mach reflection. The structure of the jet formed near the lowes wall demands
the most resolution from the difference scheme. Even on the finest grid this jet is less
than live zones wide. The weakening of the second Mach stem as it approaches the
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Fig. 9¢c. BBC. These resuits are roughly equivalent to those of MacCormack’s method, except that
the oscillations near the shocks and the unphysical structure near the main three-shock intersection have
been eliminated. The weak shock generated at the kink in the main reflected shock is quite broad, due 1o
the first, “linear” term in the artificial viscosity in Eqg. (A$2).

contact discontinuity is also difficult to resolve. Unlike the Mach 3 wind tunnel
problem, this double Mach reflection contains both steady and unsteady structures.
The curved reflected shock stretching across the problem domain is moving rapidly at
its right-hand end and is not moving at all at its left-hand end. Therefore difference
schemes which generate noise behind stationary shocks will oscillate toward the lefi-
hand end of this shock.

As for the wind tunne! problem of the previous section, the least accurate results
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Fro. 9d. ETBFCT. Most noticeable is the staircase appearance of the contour Jines. Possible causes
of this are discussed in the text. The shape of the principal Mach stem appears to be incorrect on all
grids. On the finest grid, this error may be caused by the incorrect description of the jet, m piece of which
has broken off and struck the Mach shock. The comtact discontinuity which tums to form this jet is
considerably broadencd on the middle grid and emerges from the three-shock intersection at the wrong
angle on the coarse grid. Nevertheless, the weak shock at the second Mach reflection is quile well
deacribed.

are produced by Godunov's first-order scheme. However, for this double Mach
reflection problem the Godunov scheme does not do as well in relation to
MacCormack’s scheme or BBC. The reason for this poorer performance is the
unsieady nature of this problem, This causes the shock siructures to be broader and
the computation of their interactions less accurate. Also, the contact discontinuity is

e — e m— s R S
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Fig. 9. Single-step Eulerian MUSCL. Except for the presence of some numerical noise, these
results are superior to those of MacCormack’s method, BBC, and ETBFCT. The jet is resolved on the
middic grid and caw be clearly scen on the coarse grid as well. The weak shock at the second Mach
reflection it atso well resolved on il grids. The shocks are exiremely thin, but this thinness has
permitted a numerical instability to generate noise where the shocks move slowly and are nearly aligned
with the mesh. A hint of this instability is also visible where the Mach stem sirikes the lower boundary
on the finer grids. '

not aligned with one set of grid lines, so it is greatly diffused as it moves. Although
MacCormack’s scheme oscillates behind the nearly steady portion of the curved
reflected shock, it produces overall results superior to Godunov’s scheme. It’s second-
order accuracy permits a much better tracking of the moving contact discontinuity.
The performance of the BBC scheme is better on this problem relative to
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FiG. 9. Single-step Eulerian PPM, or PPMDE. These results are an improvement over the MUSCL
resulls in two respects—the numerical instability of slowly moving shocks nearly aligned with the mesh
has been essentially eliminated and the contact discontinuity which bounds the jet is sharper. The results
are marred by starting efrors caused by the specification of pure jumps to describe the initial shock and
to trace its motion along the upper boundary. These starting ervors are diminished by the use of the
more elaborate dissipation mechanism of the run shown in Fig. 4. However, starting errors are present to
some degree in the resuits of all schemes. Comparison with the resuhs for BBC and MacCormack's
scheme indicates that PPMDE achieves roughly the same accuracy as these schemes when using less
than hall as many rones in each direction. Therefore for this problem PPMDE is more efficient than
BBC and MacCormack’s scheme by factors of more than 4.9 and 1.3, reapectively.

MacCormack’s scheme than it was on the wind tunnel problem. This should not
surprise us much, because MacCormack's scheme was designed to compule steady
acrodynamic flows, while BBC was intended for use on unsteady problems with
strong shocks. The BBC scheme produces no oscillations behind the nearly steady
reflected shock, but it gives s poorer description of the second Mach shock than
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Fic. 9g. PPMLR, or PPM formulated 38 & Lagrangian step f{ollowed by a remap. These results
improve on those of PPMDE in Fig. 91 by » reduction of the starting crrors and & sharpening of the
weak shock gencrated at the second Mach reflection. All siructures are well resolved on the middle grid,
and the results on the coarse grid are quite good. PPMLR gives superior performance to BBC and
MacCormack's scheme when these schetnes use wice as many zones in each direction. Hence it is more
efficient for thix problem than those achemes by factors of more than 4.4 and 1.2, respectively.

MacCormack’s method. The poor description of the’second Mach shock is caused in
part by the “lincar ¢” used in the Lagrangian step of BBC. Here we refer to the first
term in Eq. A12 of the Appendix. This term vanishes linearly with the velocity jump
across a zone rather than quadratically. This linear term in the artificial viscous
pressure q was suggested for use in the BBC code by William Noh as a8 means of
controlling post-shock oscillations.
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A result on the coarest grid obtained with our simplified MUSCL formulated as a
Lagrangian step followed by & remap is shown in Fig. 10. This MUSCL run with a
separate remap step shows no tendency to oscillate at the steady shock. En contrast
the single-step Eulerian MUSCL runs generate noise all along the curved teflected
shock. This comparison demonstrates the extra sensitivity of single-step Eulerian *
schemes to vanishing characteristic speeds. The extra accuracy of the single-step
Eulerian approach in many circumstances is also illusirated by comparing these
different MUSCL runs. In the PPM schemes we have paid a price for smooth results
by broadening the shocks slightly. Nevertheless, this shock broadening seems to have
thad no adverse effects upon the accuracy of the calculation, even on the coarsest grid.
The additional accuracy provided by the use of parabolae for internal zone structures
and by contact discontinuity detection is especially noticeable in the PPM results on
the fine grids. Here the contact discontinuity and the structure of the jet are
particularly well represented. The extra cost in coputer CPU time of the PPM runs
over the MUSCL ones is 20%.

For PPM there is essentially no difference in accuracy or cost between the two
formulations with and without a separate remap siep. This is certainly not the case
for MUSCL. This equivalence arises in PPM for two reasons. First, the PPM remap
is formally third-order accurate. Second, the very thin stationary shocks which are s
major advantage of the single-step Eulerian formulation have been broadened slightly
in order to climinate the noise which they would otherwise generate. For the PPM
scheme one is therefore free to use the more convenient of the two formulations,
depending upon the application at hand.

The results of the ETBFCT scheme for this double Mach reflection problem
include some unusual features. First, there is pervasive noise in these resuits, as for
the wind tunnel problem. Second, the shocks are stecpened into staircase structures.
Also these shock structures contain impossible internal states. The monotonicity
constraint guarantees well-behaved shock structures for the variables p, pu,, pu,, and
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Fic. 10. Results mt time 0.2 for the double Mach reflection problem obtained using MUSCL
formulated a3 a Lagrangian siep followed by & remap. Density contours are shown for the coarse grid
dx = dy = 1/30. The represtntation of the shock at the second Mach reflection and of the contact
discontinuity is considerably worse than is obisined with the single-step Eulerian formulation of
MUSCL.

e




166 WOODWARD AND COLELLA

pE. However, the specific internal energy £ is given a very unrcasonable structurc.
Inside the shock this variable attains twice its post-shock value, For simple gas
dynamics problems this causes no difficulties, but if chemical reactions or radiation
transport were important in the shock region, such an unreasonable structure for £ in
the shock could cause problems.

A third unusual aspect of the ETBFCT results is their description of the jet which
forms along the bottom wall. This jet does not develop the mushroom-shaped tip
which is characteristic of & dense fluid spike plunging into a lighter fluid. Such
structures commonly arise in studies of the Rayleigh-Taylor instability, for exampie.
They are also computed by all the other difference schemes in this study except
Godunov's method. At least the PPM schemes show evidence of converging on the
finest grids, so it seems likely that the ETBFCT jet structures are in error.

VIil. CONCLUSIONS

In Section Vla we formulated an objective criterion for measuring the accuracy of
the various difference schemes in this study in computing a blast wave interaction
problem in one dimension. The result of that test was an ordering of the various
schemes in terms of the accuracy achicved on a given uniform Eulerian grid. With the
most accurate schemes listed first, that ordering was as follows:

PPM (both PPMLR and PPMDE)
MUSCL

ETBFCT

BBC

MacCormack's scheme

6. Godunov's scheme

Lol

If, instead of accuracy on a given grid, accuracy achieved in a given amount of
CRAY-1 CPU time were used to make the list, then for our | — D test problem BBC
and MacCormack’s scheme would move shead of ETBFCT but otherwise this
ordering would remain the same. This reordering is mainly due to the smalier time
step which the ETBFCT scheme must use to ensure stability.

In the 2 — D test runs it is not so easy to define the qualities of the approximate
solution which are most valuable. For example, would we prefer a smooth solution
over a noisy one with certain features of the low more accurately represented? Does
the accurate representation of a jet in one part of the flow compensate for the
presence of noise in another pari? These are questions of individual Laste, and in
certain applications one feature of the solution will necessarily be more important
than another. Despite the unavoidably subjective nature of any ordering of the
schemes according lo accuracy in two-dimensional problems, we conclude that
roughly the same ordering listed above persists.

It is interesting to note that, at least for the second-order-accurate schemes in our
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list, the ordering we have given with accuracy as the criterion is also an ordering
according to general approach. Heading the list is Godunov's approach of building
the nonlincar solution to Riemann’s problem explicitly into the difference method.
After Godunov's approach comes the approach of linear hybridization, or the
blending of high-order- and low-ordes-accurate fluxes for use in the conservation.
laws. At the boitom of the list is the approach of smearing out discontinuities with an
artificial viscosity. Although these approaches have yielded schemes of differing
accuracy so far, we do not conclude that any one of them should be abandoned. Each
has its own appeal. Efforts are presently under way to improve the artificial viscosity
schemes by running them on adaptive grids, and better forms of the linear
hydridization of fluxes are also being sought.

We suspect that ali of this research may eventually lead to a conservation of
difficulty principle. The schemes of the Godunov type achieve high accuracy by
means of elaborate calculations of the fluxes at zone interfaces near flow discon-
tinuities. This complicates and slows down such schemes substatiaily. The artificial
viscosity methods perform their calculations at discontinuitics very rapidly. However,
fo achieve the same accuracy they must refine the grid locally by at least a factor of
two in each dimension and in time. Thus in 2 — D at least 8 times as many zone
updates must be performed. MacCormack’s scheme with artificial viscosity is about 6
times faster than PPM. Therefore it requises only 35% more computer time to
advance a shock on a doubly refined grid as PPM does on the original grid. At first
glance, the approach of lincar hybridization offers mathematical trick, &
monotonicity constraint on the flux, to get us out of this conservation of difficulty.
However, when used in the form of the ETBFCT scheme our results show that this
trick can lead us astray. We strongly suspect that modifications which make the flux
blending more reliable in a linear hybridization will involve much of the same
nonlinear information which is responsible for the success of PPM.

Our 2 — D test results show that if we measure accuracy obtained per CPU second
on a CRAY-1 computer we find a significantly smaller spread between the various
schemes than if we measure accuracy per zone of a uniform Eulerian grid. This is of
course related 10 the suspected conservation of difficulty principle. However, for
many applications it is only the accuracy per zone which is important. In this case
there is an enormous spread between the various schemes tested here. This measure of
performance is appropriate for the many applications for which the computer time
expended computing hydrodynamic effects is a small fraction of the overall
computation. Such applications are coupled hydrodynamics and radiative transfer
and the dynamics of a gas with a very complicated equation of state, which might
result from a dynamic balance between many different chemical constituents.

Finally, we have scen that there is a rough equivalence of accuracy and
computation time for the single-step and two-step Eulerian formulations of PPM:
PPMDE and PPMLR. In the two-step formulation, a Lagrangian calculation is
foliowed by a separate remap back to the original Eulerian grid. This equivalence of
the two Eulerian schemes is not found for similar formulations of either MUSCL or
Godunov's method. We conclude that this equivalence for PPM resuits from the
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third-order accuracy of the PPM remap step. Therefore we advise that a remap be
performed with one extra order of accuracy over the Lagrangian step if one desires
roughly the same accuracy as can be obtained by working directly in Eulerian coor-
dinates. Such two-step methods are very convenient for performing multifiuid
Eulerian computations.

Before closing it should be noted that the one-dimensional test problem presented
here indicates a much wider spread in computational efficiency than is found in the
{wo-dimensional 1ests. The one-dimensional problem thus argues against a conser-
vation of difficulty principle. There are two reasons for this discrepancy. First, the
largest errors in the | —D problem arise st contact discontinuities. In two
dimensions, contact discontinuities are often slip lines. When this slip is oblique to
the mesh it gives rise to artifical compressional motions in the individual x- and y-
passes of operator-split difference schemes such as the ones compared here. These
compressional motions help to prevent rapid mass diffusion near the contact discon-
tinuity. The second reason for the wide spread of computational efficiencies for the
1 — D test problem is the extreme difficulty of that problem. It pushes the best of the
schemes to their limits and the worst of the schemes well beyond theirs. A problem of
this nature in two dimensions is presently completely out of the question. as
convergence for the most accurate scheme considered here would require a grid of a
million zones. The one-dimensional test problem is useful in showing the performance
of the schemes under extreme conditions not soon to be encountered in practical two-
dimensional calculations. Good performance on such an extreme problem should thus
assure high-quality results under more ordinary circumstances.

APPENDIX—Tue BBC SCHEME

Here we will describe the x-sweep of a 2 — D BBC computation. A full 2 — D step
consists of an x-sweep, followed by two y-sweeps, and then by an x-sweep. All these
four sweeps must use the same time step to achieve second-order accuracy {cf. {47]).
We will denote zone-centered data by subscripts { — 1, #, { + 1 and interface centered
data by subscripts { — §, i + §. The y-velocities are centered at the top and bottom
interfaces of zones. We denote these interfaces by T7 and Bi, respectively. Time levels
are denoted by superscripts s, n+ L n+ L, n+ 1.

We begin with the Lagrangian step of the method. In terms of a mass coordinate
m, defined by

dm = p dx, (Al)

we can write the Lagr;ngian equations of hydrodynamics in one dimension as
follows:

avV/at = dufom, (A2)
dufét = —dp/om, (A3)
AE[dt = —d(up)/om. (Ad)
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Here ¥ is the specifc volume, 1/p, and E is the specific total energy. We have denoted
t, by u and will write v for u,. Defining £ as the specific internal energy, we may
wrile an internal energy equation familiar from thermodynamics:

defot = —p(aVien. (AS)
To perform a 1 — D sweep of & 2 — D calculation, we must remember that

E=c¢+{(u?+0v%). {A6)

In this t — D sweep the transverse velocity is passively advected:
ov)a1 = 0. (A7)

These Lagrangian equations, specialized to the case of a gamma-law gas, are
approximated by the following BBC difference equations, based on the data

P E] Ul 1120 V5 for i=1,2,.,N:

e =El — “(”?— Iﬂ)' + (uf, lfl)' + (v:l)! + (”:'l):]- (AB)
pi=(y—1}plel, (A9)
am;=p, 4%, = p (X141~ Xi-112) (A10)

q7 = p}|{max{0, (uf_,, — uj, P + [max{0, (3, — o7 1% (All)

. U2 =¥i_1p2) , (V7 —v5)
q;=0, when [ ax, + 2 ] >0

otherwise
@ =4 + 4 (A12)
o, =£—' [(p: + 164,)/0)))"", (A13)

_ A7 +47) = (P + 1)

ut VS

-1 =HWian Tdm +4m,) ' (Al4)

prtin _ pm - POV T

i =V +-2—m(l‘u.m = Wisy: (A15)

€1V = ef = (b + 4]VI* - V), (A16)

P = ) et v, (A17)
A(p1* M + g1 — (P + qfy)] )

P Y B ! i izl -1

Wi =W (@am,_, +4m,) ' (Al18)
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Aa=xlptd A (Al9)
uiti, = 1"?3'/:’ — W1 (A20)
‘ "
Vet = Vi 4 i - i (A20)
'

o,=maxid,, |(V] - V"' WVIIh (A22)

e =gt = (prt IVt - VD), (A23)
vl =va (A24)
Eft'=et' 4 il("';'_‘.'n)’ + (“l'-:llfl)! + (”:f“)! + 5"} {A25)

It is not immediately apparent, but William Noh has pointed out that this
Lagrangian step is actually in conservation form. This lollows from the fact that the
BBC dilference equations given above can be manipulated to yield s difference
equation for a specific total energy, E, which is in a pure flux form, namety:

1 4t . n .
Bt = By — o i ALPEN + aT) + (01 + 4D
I
- "J‘L‘/’:’l(l’?—‘l‘” +ql )+ (00" V1D (A26)
where
1 1
Ei=¢+ ryT™ {(dm_, + dm)) ul_ya+ dm+4m,, ) ui il + ry (v + 03)
'

{A2T7)

This relation implies that the total energy, the sum over { of 4m,E,, is conserved by
the scheme exactly il the boundary fluxes vanish. Because the formula for E, in Eq.
{A25) is the same as that for E, in Eq.(A27), except for a redistribution among
neighboring zones of & fixed amount of kinetic energy, this exact conservation of
Y 4m,E, implies exact conservation of ¥ Am,E, as well. The specific total energy
used for the remap step of BBC is defined by Eq. {A25) because this simpler formula
gives somewhat better results than Eq. (A27).

The remap step of BBC is based upon ideas from a MUSCL advection scheme
described by van Leer in |4]. In cach zone a linear distribution of deasity with
respect to a volume coordinate is constructed having the zone-averaged value of p
obtained from the Lagrangian calculation:

pr(x)=pi*! 4 4p7* (x — 27 1)/ Ax] (A28)

for x within zone i. The slope dp}*' is determined as follows:

Ap; = s max{0, min{s dp, _.s$4p, }} (A29)
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where
24x,
Apy, = 4 oememe -
pf! z (Ax‘ +JX,*|) wltl pf)’ (Aso)

Here s is the sign of 4p,, , and we have omitted superscripts n + | throughout. The
advected mass ém at each zone interface is then determined by integrating the linear
density distribution over the advected volume:

om_ = (xl.:llft —-x]. m)IPi-:l' + 44072 (x7_ i — X7 A%,y
when .\'ff.'n > ..l’,'_ 171 and
om,_ = (ErACPEE (P [ AR ¥ A ! (-‘ffl'n - xi_in)dx;|

when x71 /)y < x{_yp. (A}D)

The new density in Eulerian zone { is then

ol = dx?* o]t — (Bmy, \p — Omy_ )}/ Ax]. (A32)

A similar remapping is performed for the specific total energy E, but the mass coor-
dinate defined by Eq. (Al) plays the role of x in the above formulae. Also the
advected mass dm,_,,, computed in Eq. (A31) plays the role of the advected volume.

For the momenta, the remap is also performed using a mass coordinate. The
velocity w;_,,; is regarded as the x-momentum per unit mass averaged over a
momentum box consisting of half the mass of each of zones / — | and {. The advected
masses for such momentum boxes are then given by

oy = {(3my_ s + Sy, 0) (A33)

The velocity v,, is regarded as the y-momentum per unit mass averaged over a
momentum box consisting of half the mass of each of zone / and the zone below it.
‘The advected masses for such momentum boxes are then given by simple averages of
the advected masses dm,_,,, for zones in neighboring rows.

The formula for dp, given above yields a second-order-accurate monotone
advection scheme which is formally less accurate than the advection schemes
discussed by van Leer in [4]. However, those more accurate schemes do not combine
well with the Lagrangian step of BBC. In particular, at early times in the
developement of the blast wave problem shown in Fig. I, BBC will generate
impossibly high densities ranging from 8 to 10 depending upon which more accurate
remapping scheme is employed. The remap tep described here is formally less
accurate but yields no unphysically large compressions.




